网站首页  留学  移民  外语考试  英语词汇  法语词汇  旧版资料

请输入您要查询的出国留学信息:

 

标题 2014考研数学冲刺:高等数学重要考点汇总
内容
    一、函数、极限、连续
    考试要求
    1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
    2.了解函数的有界性、单调性、周期性和奇偶性。
    3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
    4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
    5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
    6.掌握极限的性质及四则运算法则。
    7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
    8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
    9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
    10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
    二、一元函数微分学
    考试要求
    1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
    2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
    3.了解高阶导数的概念,会求简单函数的高阶导数。
    4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
    5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
    6.掌握用洛必达法则求未定式极限的方法。
    7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
    8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
    9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
    三、一元函数积分学
    考试要求
    1.理解原函数的概念,理解不定积分和定积分的概念。
    2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
    3.会求有理函数、三角函数有理式和简单无理函数的积分。
    4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
    5.了解反常积分的概念,会计算反常积分。
    6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
    
考研大纲 考研经验 考研真题 考研答案 考研院校 考研录取

    
随便看

 

出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。

 

Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/6/1 20:22:52