网站首页
留学
移民
外语考试
英语词汇
法语词汇
旧版资料
请输入您要查询的出国留学信息:
标题
2012中考数学考点 解证比例线段
内容
巧用比例性质,解证比例线段
江苏省东台中学实验初中 周礼寅
比例的三条性质,是相似形中证明比例线段问题的基本依据,若能灵活加以应用,则可减少思维障碍,迅速打开解题突破口。
1
巧用基本性质
“三点形法”是证明线段等积的最常用也是最有效的方法。它是根据比例的基本性质,将等积式转化为比例式,找出其中包含的几个字母,是否存在可由“三点”定出的两个相似三角形。
例1、如图1,在Rt△ABC中,∠BAC=
,AB=AC,D为BC中点,E为AC上一点,点G在BE上,连结DG并延长交AE于F,若∠FGE=
,(1)求证:BD·BC=BG·BE;(2)求证:AG⊥BE;(3)若E为AC的中点,求EF∶FD的值。
分析:(1)将待证的等积式化为比例式:
,横看:比例式的两个分子为B、D、E三点,两个分母为B、G、C三点,均不能构成相似三角形;竖看:比例式左端BD、BG构成△BDG,右端BE、BC构成△BEC,依“三点形法”只需证△BDG∽△BEC;(2)、(3)分析略。
在运用“三点形法”时,首先要化等积式为比例式,然后再横看看、竖看看,找到相似三角形进而证明。但有时将等积式化为比例式后无法再用“三点形法”,此时还需运用以下三种常用的转化方法进行证明:
1
.1 等线段转化法
例2、如图2,△ABC中,AB=AC,AD是中线,P为AD上一点,过点C作CF∥AB,延长BP交AC于E,交CF于F,求证:
=PE·PF
分析:线段BP、PE、PF在同一条直线BE上,无法用相似三角形来证明。连结PC,可得BP=PC,故可用PC来替换BP。
证明:连结PC,
∵△ABC中,AB=AC,AD是中线
∴AP平分∠BAC ,∠BAP=∠CAP
∴△BAP≌△CAP,
∴BP=CP,∠ABP=∠ACP
又∵CF∥AB
∴∠ABP=∠F
∴∠ACP=∠F
∴△PCF∽△PEC
∴
,
=PE·PF
而 BP=CP
∴
=PE·PF
将某线段用与其相等的线段替换,以便能构成相似三角形,这是证明线段比例式和等积式的基本方法之一。
1.
2
等积转化法
例3、如图3,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,求证:AE·AB=AF·AC
分析:待证结论中的线段虽然能构成△ABC与△AEF,但不能找到相似条件。注意到题目中的垂直关系较多,联系课本中的“母子相似形”这一基本图形的有关结论,可将待证结论转化。
证明:
∵AD⊥BC, DE⊥AB
∴Rt△ADB∽Rt△AED
∴
,
=AB·AE
同理,
=AF·AC
∴AE·AB=AF·AC
“母子相似形”这一基本图形是教材中的例题,它的基本结论有如下几个:如图,在Rt△ABC中CD⊥AB于D,则有
① △ABC∽△ACD∽△CBD
②
=BD·AD,
=AD
·AB,
=BD
·AB
③ CD·AB= BC·AC
要特别注意这些结论的灵活运用。
1.
3
等比转化法
例4、已知如图4,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F,求证:AC∶BC=DF∶CF
分析:将结论改写为:
,横看,分子不能构成两个三角形;竖看,虽依“三点形法”有△ABC与△DCF,但它们显然不相似,只能另寻突破口。注意到“母子相似形”这一重要的基本图形,有
,故只需证
,即证△FDC∽△FAD。
证明:∵在Rt△ABC中,CD⊥AB
∴∠B=∠ACD,
∵△ACD∽△CBD
∴
又∵E为Rt△CDB中BC的中点
∴DE=BE=CE,∠B=∠EDB=∠ADF
∴△FDC∽△FAD
∴
∴
即AC∶BC=DF∶CF
以上几种方法都是利用比例的基本性质对待证结论进行的等价转化,这种转化是相似形中最常用的一种变形。
2
巧用合比性质
当待证结论经转化后,其形式与合比性质相似,这时应再次运用合比性质将结论进一步转化,直至找到相似三角形。
例5、已知如图5,在△ABC中,AD为∠BAC的角平分线,EF是AD的垂直平分线且交AB于E,交BC的延长线于F,求证:DC·DF=BD·CF
分析:欲证:DC·DF=BD·CF
即证:
即证:
若连结AF,则AF=DF
故即证:
只需证△FAB∽△FCA
证明:
连结AF,则AF=DF,∠FAD=∠FDA
∵AD平分∠BAC
∴∠BAD=∠CAD
又∵∠FAD=∠CAD+∠CAF,∠FDA=∠B+∠BAD
∴∠B=∠CAF
∴△FAB∽△FCA,以下证明略。
3
巧用等比性质
例6、如图6,I是△ABC三个内角平分线的交点,AI交对边于D,求证:
分析:观察等式右边,可用合比性质或等比性质转化。但若用合比性质进行转化,左边不易转化,故考虑用等比性质转化待证结论。
欲证:
即证:
由于BI、CI分别平分∠ABC、∠ACB,
故有:
由等比性质,得证。
注:本题证明过程中应用了角平分线的性质,即如图7,若AD平分∠BAC,则
(图7)
相似三角形中比例线段的证明方法很多,也很灵活。我们只有在平时学习中主动探究,合作交流,注重总结,举一反三,这样才能真正做数学学习的主人。
中考政策
中考状元
中考饮食
中考备考辅导
中考复习资料
随便看
2023关于仓库年终总结1000字(精选6篇)
2023银行企业年终总结3500字5篇
关于大学中秋节活动策划书
写情人节的句子短语分享41句
安全生产工作实施方案通用5篇
2023年伦敦玛丽女王大学暑期语言班信息盘点介绍:申请时间+申请要求汇总!
怎么发朋友圈幽默15句
春节简短给长辈拜年祝福语55条
[参考]幼儿园毕业典礼老师致辞简短(精选9篇)
政协年度计划怎么写模板
给客户感谢信模板汇总
部门宣传部门工作计划通用
大学军训的自我鉴定怎么写模板
小学数学教师年度考核个人总结简单
酒店员工工作总结模板
祝福好友生日祝福语(大全35句)
幽默高情商的早安的句子(精选74条)
基层管理工作总结报告模板
单位物业客服工作计划1000字(系列3篇)
[热门]竞聘组长岗位演讲稿合集
美国亚利桑那州立大学留学研究生费用总共需要多少钱?
会务工作计划格1500字模板9篇
2023年终企业员工个人工作总结通用4篇
校园疫情防控方案怎么写1500字汇总
最新给全体员工的一封信1000字(通用8篇)
plastine
plastiquage
plastique
plastiquement
plastiquer
plastiqueur
plastisation
plastiser
plastisol
plastochimie
undeliberatingly
undelicious
undeliciously
undelighted
undelightedly
undelinquent
undelinquently
undelirious
undeliriously
undeluded
英国的经济与政治介绍
英国旅游伦敦的七种奇特体验
英国旅游指南!一定要看!
英国风俗和传统节日你了解吗?
移民英国的禁忌
英国的付款方式
你对英国啤酒了解多少?
英国的简介、地理文化与历史
澳大利亚的传统美食
澳大利亚葡萄酒的五个关键词
2018年6月30日托福考试回忆
一篇了解美国大学学制
托福独立写作真题范文:你喜欢啥时候买电子设备?
2018年6月23日托福考试回忆
托福高分备考计划表
2018年5月26日托福考试回忆
扒一扒毕业之后年薪10万刀的研究生专业,怪不得我穷!
托福口语突破 Week 3 :Task 3 解题技巧 & 高分模板
托福必备高频词list1
托福口语突破 Week 5:Task 5 解题技巧 & 高分模板
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。
Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/12/28 6:02:24