网站首页  留学  移民  外语考试  英语词汇  法语词汇  旧版资料

请输入您要查询的出国留学信息:

 

标题 考研数学备考:两角和差公式
内容
    考研复习的路上总会遇上许多复习问题,今天小编就帮助各位考研党整理一下比较常见的复习问题,下面由出国留学网小编为你精心准备了“考研数学备考:两角和差公式”,持续关注本站将可以持续获取更多的考试资讯!
    考研数学备考:两角和差公式
    1、两角和与差的三角函数公式:
    sin(α+β)=sinαcosβ+cosαsinβ
    sin(α-β)=sinαcosβ-cosαsinβ
    cos(α+β)=cosαcosβ-sinαsinβ
    cos(α-β)=cosαcosβ+sinαsinβ
    tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    2、二倍角公式:
    二倍角的正弦、余弦和正切公式(升幂缩角公式)
    sin2α=2sinαcosα
    cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
    tan2α=2tanα/[1-tan^2(α)]
    3、半角公式:
    半角的正弦、余弦和正切公式(降幂扩角公式)
    sin^2(α/2)=(1-cosα)/2
    cos^2(α/2)=(1+cosα)/2
    tan^2(α/2)=(1-cosα)/(1+cosα)
    另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
    4、万能公式:
    sinα=2tan(α/2)/[1+tan^2(α/2)]
    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
    tanα=2tan(α/2)/[1-tan^2(α/2)]
    万能公式推导:
    附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*
    (因为cos^2(α)+sin^2(α)=1)
    再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
    然后用α/2代替α即可。
    同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
    5、三倍角公式:
    三倍角的正弦、余弦和正切公式:
    sin3α=3sinα-4sin^3(α)
    cos3α=4cos^3(α)-3cosα
    tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
    三倍角公式推导:
    附推导:
    tan3α=sin3α/cos3α
    =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
    =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
    上下同除以cos^3(α),得:
    tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
    sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
    =2sinαcos^2(α)+(1-2sin^2(α))sinα
    =2sinα-2sin^3(α)+sinα-2sin^3(α)
    =3sinα-4sin^3(α)
    cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
    =(2cos^2(α)-1)cosα-2cosαsin^2(α)
    =2cos^3(α)-cosα+(2cosα-2cos^3(α))
    =4cos^3(α)-3cosα
    即
    sin3α=3sinα-4sin^3(α)
    cos3α=4cos^3(α)-3cosα
    三倍角公式联想记忆:
    记忆方法:谐音、联想
    正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
    余弦三倍角:4元3角减3元(减完之后还有“余”)
    Ps:注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
    另外的记忆方法:
    正弦三倍角:山无司令(谐音为三无四立)三指的是"3倍"sinα,无指的是减号,四指的是"4倍",立指的是sinα立方
    余弦三倍角:司令无山与上同理
    6、和差化积公式
    三角函数的和差化积公式
    sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
    三角函数的积化和差公式:
    sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
    cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
    cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
    sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
    和差化积公式推导:
    附推导:
    首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
    我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
    所以,sina*cosb=(sin(a+b)+sin(a-b))/2
    同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
    同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
    所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
    所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
    同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
    这样,我们就得到了积化和差的四个公式:
    sina*cosb=(sin(a+b)+sin(a-b))/2
    cosa*sinb=(sin(a+b)-sin(a-b))/2
    cosa*cosb=(cos(a+b)+cos(a-b))/2
    sina*sinb=-(cos(a+b)-cos(a-b))/2
    有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
    我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
    把a,b分别用x,y表示就可以得到和差化积的四个公式:
    sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
    sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
    cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
    cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
    
随便看

 

出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。

 

Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/6/5 22:24:28