网站首页  留学  移民  外语考试  英语词汇  法语词汇  旧版资料

请输入您要查询的出国留学信息:

 

标题 一元三次方程快速解法有什么
内容
    在日常的学习生活中,同学们对一元二次方程都有些自顾不暇,更不要说什么一元三次方程了。但是总有一些同学不畏难题,直面挑战,于是他们会问一元三次方程的解法有什么呢?下面是由出国留学网小编为大家整理的“一元三次方程快速解法有什么”,仅供参考,欢迎大家阅读。
    一元三次方程解法有什么
    一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
    一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
    (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
    (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
    (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
    x^3=(A+B)+3(AB)^(1/3)x,移项可得
    (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
    (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
    (6)A+B=-q,AB=-(p/3)^3
    (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
    (8)y1+y2=-(b/a),y1*y2=c/a
    (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
    (10)由于型为ay^2+by+c=0的一元二次方程求根公式为
    y1=-(b+(b^2-4ac)^(1/2))/(2a)
    y2=-(b-(b^2-4ac)^(1/2))/(2a)
    可化为
    (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
    y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
    将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
    (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
    B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
    (13)将A,B代入x=A^(1/3)+B^(1/3)得
    (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
    式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
    ax3+bx2+cx+d=0 记:p=(27a2d+9abc-2b3)/(54a3) q=(3ac-b2)/(9a2) X1=-b/(3a)+(-p+(p2+q3)^(1/2))^(1/3)+ (-p-(p2+q3)^(1/2))^(1/3)
    一元三次方程快速解法有什么
    一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法。
    因式分解法
    因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。
    例如:解方程x^3-x=0
    对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。
    一种换元法
    对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。
    令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。
    卡尔丹公式法
    特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。
    判别式Δ=(q/2)^2+(p/3)^3。
    卡尔丹公式
    X1=(Y1)^(1/3)+(Y2)^(1/3);
    X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;
    X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,
    其中ω=(-1+i3^(1/2))/2;
    Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。
    标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
    令X=Y—b/(3a)代入上式。
    可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。
    
    
随便看

 

出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。

 

Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/5/22 17:58:26