网站首页 留学 移民 外语考试 英语词汇 法语词汇 旧版资料
标题 | 高中数学教案模板范文精选6篇 |
内容 |
一位杰出的老师往都会进行教案编写工作,编写教案有利于准确把握教材的重点与难点,进而选择合适的教学方法。下面是由出国留学网编辑为大家整理的“高中数学教案模板范文精选6篇”,仅供参考,欢迎大家阅读本文。 篇一:高中数学教案模板范文精选 教学目标: 1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进 学生全面认识数学的科学价值、应用价值和文化价值。 2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。 教学重点: 如何建立实际问题的目标函数是教学的重点与难点。 教学过程: 一、问题情境 问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大? 问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小? 问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省? 二、新课引入 导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。 1。几何方面的应用(面积和体积等的最值)。 2。物理方面的应用(功和功率等最值)。 3。经济学方面的应用(利润方面最值)。 三、知识建构 例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 说明1解应用题一般有四个要点步骤:设——列——解——答。 说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极 值及端点值比较即可。 例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才 能使所用的材料最省? 变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 说明1这种在定义域内仅有一个极值的函数称单峰函数。 说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为: S1列:列出函数关系式。 S2求:求函数的导数。 S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。 例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为 多大时,才能使电功率最大?最大电功率是多少? 说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。 例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。 例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。 (1)设,生产多少单位产品时,边际成本最低? (2)设,产品的单价,怎样的定价可使利润最大? 四、课堂练习 1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。 2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。 3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少? 4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。 五、回顾反思 (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。 (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。 (3)相当多有关最值的实际问题用导数方法解决较简单。 六、课外作业 课本第38页第1,2,3,4题。 篇二:高中数学教案模板范文精选 高中数学趣味竞赛题(共10题) 1 、撒谎的有几人 5个高中生有,她们面对学校的新闻采访说了如下的话: 爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。” 玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。” 千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢? 2、她们到底是谁 有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。 穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢? 3、半只小猫 听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。 “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢? 4、被虫子吃掉的算式 一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。 那么,请问原来的算式是什么样子的呢? 5、巧动火柴 用16根火柴摆成5个正方形。请移动2根火柴,使正形变成4。 6、折过来的角 把正三角形的纸如图那样折过来时,角?的度数是多少度? 7、星形角之和 求星形尖端的角度之和。 8、啊!双胞胎? 丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。 结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢? 9、赠送和降价哪个更好? 1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好? 10、折成15度 用折纸做成45度很简单是吧。那么,请折成15度,你会吗? 篇三:高中数学教案模板范文精选 一、课程性质与任务 数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。 数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。 二、课程教学目标 1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。 2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。 3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。 三、教学内容结构 本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。 1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。 2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。 3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。 四、教学内容与要求 (一)本大纲教学要求用语的表述1.认知要求(分为三个层次) 了解:初步知道知识的含义及其简单应用。 理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力) 计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。 空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。 分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。 数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。 (二)教学内容与要求1.基础模块(128学时) 第1单元集合(10学时) 第2单元不等式(8学时) 第6单元数列(10学时) 第7单元平面向量(矢量)(10学时) 第8单元直线和圆的方程(18学时) 第10单元概率与统计初步(16学时) 2.职业模块 第2单元坐标变换与参数方程(12学时) 篇四:高中数学教案模板范文精选 教学目标: 1、理解并掌握曲线在某一点处的切线的概念; 2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法; 3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化 问题的能力及数形结合思想。 教学重点: 理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。 教学难点: 用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。 教学过程: 一、问题情境 1、问题情境。 如何精确地刻画曲线上某一点处的变化趋势呢? 如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。 如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。 因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。 2、探究活动。 如图所示,直线l1,l2为经过曲线上一点P的两条直线, (1)试判断哪一条直线在点P附近更加逼近曲线; (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗? (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗? 二、建构数学 切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。 思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程? 三、数学运用 例1 试求在点(2,4)处的切线斜率。 解法一 分析:设P(2,4),Q(xQ,f(xQ)), 则割线PQ的斜率为: 当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率; 当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。 从而曲线f(x)=x2在点(2,4)处的切线斜率为4。 解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为: 当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。 练习 试求在x=1处的切线斜率。 解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为: 当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。 小结 求曲线上一点处的切线斜率的一般步骤: (1)找到定点P的坐标,设出动点Q的坐标; (2)求出割线PQ的斜率; (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。 思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程? 解 设 所以,当无限趋近于0时,无限趋近于点处的切线的斜率。 变式训练 1。已知,求曲线在处的切线斜率和切线方程; 2。已知,求曲线在处的切线斜率和切线方程; 3。已知,求曲线在处的切线斜率和切线方程。 课堂练习 已知,求曲线在处的切线斜率和切线方程。 四、回顾小结 1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。 2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。 五、课外作业 篇五:高中数学教案模板范文精选 一、教学目标: 掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 二、教学重点: 向量的性质及相关知识的综合应用。 三、教学过程: (一)主要知识: 1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 (二)例题分析:略 四、小结: 1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题, 2、渗透数学建模的思想,切实培养分析和解决问题的能力。 五、作业: 略 篇六:高中数学教案模板范文精选 一、教学目标 【知识与技能】 掌握三角函数的单调性以及三角函数值的取值范围。 【过程与方法】 经历三角函数的单调性的探索过程,提升逻辑推理能力。 【情感态度价值观】 在猜想计算的过程中,提高学习数学的兴趣。 二、教学重难点 【教学重点】 三角函数的单调性以及三角函数值的取值范围。 【教学难点】 探究三角函数的单调性以及三角函数值的取值范围过程。 三、教学过程 (一)引入新课 提出问题:如何研究三角函数的单调性 (二)小结作业 提问:今天学习了什么? 引导学生回顾:基本不等式以及推导证明过程。 课后作业: 思考如何用三角函数单调性比较三角函数值的大小。 高中教学计划小编推荐各科教学设计: 语文、数学、英语、历史、地理、政治、化学、物理、生物、美术、音乐、体育、信息技术 |
随便看 |
|
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。