网站首页
留学
移民
外语考试
英语词汇
法语词汇
旧版资料
请输入您要查询的出国留学信息:
标题
2012中考数学考点 三角形内角和
内容
三角形内角和定理证明中化归思想的渗透
宁夏同心县第四中学 马 军
所谓化归思想,就是在面临新问题时,总企图将它转化归结为已经解决了的问题或者比较熟悉的问题来解决。初中数学尤其是几何教学中,很多问题都可以用运化归思想来解决。
三角形内角和定理 三角形三个内角的和等
干180°
.
已知:△
ABC(
如图
1).
求证:∠
A+
∠
B+
∠
C=180
°.
三角形内角和定理有多种证明方法,那么,这些证法都是怎样想到的呢
?
我们下面来作一下分析,
思路一
要证明三角形的三个内角之和等于
180
°,联想到平角的大小是
180
°.因此,便设法将三角形的三个内角拼成一个平角,为此,用辅助线构造出一个平角,再用辅助线
(
平行线
)"
移动
"
内角,将其集中起来,或用其它方法将其集中起来,这就是
"
拼角
"
的思路
.
“
移动内角(或用其它方法)
”
把三角形的三个内角拼成一个平角
根据这个思路,可设计出多种证法,证法如下:
证法一
延长边
BC
,
CD
是延长线,并过顶点
C
作
CE
∥
BA
(如图
2
),则∠
1=
∠
A(
两直线平行,内错角相等
)
,∠
2=
∠
B(
两直线平行,同位角相等
).
又∵∠
1+
∠
2+
∠
ACB
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
ACB
=
180
°
.
证法二
过顶点
C
作
DE
∥
AB(
如图
3)
,则∠
1
=∠
A
,∠
2
=∠
B(
两直线平行,内错角相等
)
.
又∵∠
1+
∠
ACB+
∠
2
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
ACB+
∠
B
=
180
°
证法三
在
BC
边上任取一点
D
,作
DE
∥
BA
,
DF
∥
CA
,分别交
AC
于
E
,交
AB
于
F(
如图
4)
,则有∠
2
=∠
B
,∠
3
=
∠
C(
两直线平行,同位角相等
)
,
∠
1
=∠
4(
两直线平行,内错角相等
)
,
∠
4
=∠
A(
两直线平行,同位角相等
)
,
∴∠
1
=∠
A(
等量代换
).
又∵∠
1+
∠
2+
∠
3
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
C
=
180
°
.
证法四
作
BC
的延长线
CD
,在△
ABC
的外部以
CA
为一边,
CE
为另一边画∠
1
=∠
A(
如图
5)
,于是
CE
∥
BA(
内错角相等,两直线平行
).
∴∠
B
=∠
2(
两直线平行,同位角相等
).
又∵∠
1+
∠
2+
∠
ACB
=
180
°
(
平角的定义
)
,
∴∠
A+
∠
B+
∠
ACB=180
°
.
证法五
在△
ABC
的内部任取一点
D
,连结
AD
、
BD
,并延长分别交边
BC
、
AC
于点
E
、
F
,再连结
CD(
如图
6)
,则有∠
7=
∠
1+
∠
2
,∠
8
=∠
3+
∠
4
,∠
9=
∠
5+
∠
6(
三角形的任何一个外角等于和它不相邻的两个内角的和
).
又∵∠
7+
∠
8+
∠
9=180
°
(
平角的定义
)
,
∴∠
1+
∠
2+
∠
3+
∠
4+
∠
5+
∠
6=180
°
.
即∠
BAC+
∠
ABC+
∠
ACB=180
°.
思路二
我们知道,平行线的同旁内角之和为
180
°,那么,能否将三角形的三个内角拼成平行线的一组同旁内角呢
?
根据这一思路,也可以设计出多种证法,证法如下:
证法六
过顶点
C
作
CD
∥
BA(
如图
7)
,则∠
1
=∠
A(
两直线平行,内错角相等
)
.
∵
CD
∥
BA.
∴∠
1+
∠
ACB+
∠
B
=
180
°
(
两直线平行,同旁内角互补
)
.
∴∠
A+
∠
ACB+
∠
B
=
180
°
.
证法七
任作射
AD
交
BC
于
D
,分别过点
B
、
C
作
BE
∥
DA
,
CF
∥
DA(
如图
8)
,则有∠
1
=∠
3
,∠
2
=∠
4(
两直线平行,内错角相等
).
∵
BE
∥
DA
,
CF
∥
DA
,
∴
BE
∥
CF.
∴∠
3+
∠
ABC+
∠
ACB+
∠
4
=
180
°
(
两直线平行,同旁内角互补
)
.
∴∠
1+
∠
ABC+
∠
ACB+
∠
2
=
180
°
.
∴∠
BAC+
∠
ABC+
∠
ACB
=
180
°
.
上面两种证明思路,都是化归思想的体现.这种思想是一种重要的解题策略,它可以帮助我们确定思考的方向
.
中考政策
中考状元
中考饮食
中考备考辅导
中考复习资料
随便看
音乐教育
争端解决
医用超声诊断
音乐教育
生物医药科学
音乐
音乐教育
渔业与野生物科学
地质科学
行为障碍
会计学
发展心理学
发育障碍
生物化学
神经科学
生物信息学
自然资源
科学教育
神经科学
俄罗斯与斯拉夫研究
动物科学
学校心理学
信息学
人类营养,食品与食品系统学
农业教育
scholzite
schonfelsite
schooner
schoonerite
schoonérite
schorenbergite
schorl
schorlace
schorlacé
schorlifere
technostressed
tectonic
tectonically
teddy
tediosity
tedious
tediously
tediousness
tediousnesses
tedisome, tediousome
移民加拿大后怎么样找工作?
加拿大自雇移民攻略
移民加拿大可以工作吗?哪些职业收入高?
加拿大买房,不知道这些亏大了
加拿大工作商务礼仪干货
移民加拿大后,快速帮你融入这个国度
想加拿大工作,这些方法帮你事半功倍
移民加拿大的经验,值得收藏!
加拿大是一个什么样的国家?
移民加拿大安大略省之前需要了解什么?
SAT阅读常见5种误区介绍
SAT阅读解题思路及步骤介绍
SAT阅读文章哪些地方需要略读?
SAT阅读方法之怎样原文定位?
SAT数学常见失分点有哪些?
SAT数学统计学考察内容介绍
SAT数学逻辑推理题解题方法分享
SAT数学有关符号的词汇介绍
SAT数学概率论难题介绍
SAT阅读四大常见题型详解
出国留学网为出国留学人员提供留学、移民、外语考试等出国知识,帮助用户化解出国留学过程中的各种疑难问题。
Copyright © 2002-2024 swcvc.com All Rights Reserved
更新时间:2025/7/10 6:24:18