内容 |
正多边形的内角和公式同学们还记得吗?如果记不清了,快来小编这里复习复习。下面是由出国留学网小编为大家整理的“正多边形内角和公式是什么”,仅供参考,欢迎大家阅读。 正多边形内角和公式是什么 画一个多边形,在它的中间找一点,分别把顶点和这点相连,组成n个三角形,n个三角形的内角和(180n)减去中间一个圆周的角度(360°)便是多边形的内角和 即 180n-360=180(n-2) 拓展阅读:多边形内角和是多少 (n-2)180 推论 任意正多边形的外角和=360° 正多边形任意两条相邻边连线所构成的三角形是等腰三角形 多边形的内角和 定义 〔n-2〕×180° 多边形内角和定理证明 证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形. 因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360° 所以n边形的内角和是n·180°-2×180°=(n-2)·180°. 即n边形的内角和等于(n-2)×180°. 证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形. 因为这(n-2)个三角形的内角和都等于(n-2)·180° 所以n边形的内角和是(n-2)×180°. 证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形, 这(n-1)个三角形的内角和等于(n-1)·180° 以P为公共顶点的(n-1)个角的和是180° 所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°. 重点:多边形内角和定理及推论的应用。 难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。 |